Extensions 1→N→G→Q→1 with N=C22 and Q=C3×Dic9

Direct product G=N×Q with N=C22 and Q=C3×Dic9
dρLabelID
C2×C6×Dic9144C2xC6xDic9432,372

Semidirect products G=N:Q with N=C22 and Q=C3×Dic9
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×Dic9) = C3×C6.S4φ: C3×Dic9/C3×C6S3 ⊆ Aut C22366C2^2:(C3xDic9)432,250
C222(C3×Dic9) = A4×Dic9φ: C3×Dic9/Dic9C3 ⊆ Aut C221086-C2^2:2(C3xDic9)432,266
C223(C3×Dic9) = C3×C18.D4φ: C3×Dic9/C3×C18C2 ⊆ Aut C2272C2^2:3(C3xDic9)432,164

Non-split extensions G=N.Q with N=C22 and Q=C3×Dic9
extensionφ:Q→Aut NdρLabelID
C22.(C3×Dic9) = C3×C4.Dic9φ: C3×Dic9/C3×C18C2 ⊆ Aut C22722C2^2.(C3xDic9)432,125
C22.2(C3×Dic9) = C6×C9⋊C8central extension (φ=1)144C2^2.2(C3xDic9)432,124

׿
×
𝔽